Wednesday, March 19, 2014

how battery works 4

Understanding battery capacity: Ah is not A

Posted by Jan on 12 November 2010
I used battery holders for eight “C” alkaline cells on my robot after not finding a 12V, 1A battery.
My earliest electronics projects and my first robot were powered by regular alkaline batteries, and I didn’t think about current or the capacity of those batteries. The batteries were prominently labeled “1.5V”, and I was happy in my understanding that putting four in a battery holder got me to 6 volts; when the motors slowed down, it was time for new batteries. When I began designing my second robot, I found some 12V, 1A motors (what a “1-amp motor” might mean is a topic for another post) and promptly wasted many hours dragging parents and teachers to Radio Shack and car parts stores looking for a 12V, 1A battery. No one understood that the batteries were labeled with capacity, not current, and since the smallest 12V motorcycle and alarm system batteries in town were 3Ah or 4Ah, I went home empty handed. I ended up using alkalines. Apparently, once the battery capacity wasn’t in my face, I forgot about my concern that they would force too much current into my motors.
I made many common mistakes in going about my battery selection:
  • Not understanding that my circuit would draw whatever current it wanted from the battery, as opposed to the battery forcing a given amount of current into the circuit.
  • Thinking that my motors would draw a fixed amount of current.
  • Confusing current and capacity.
  • Ignoring the “h” in “Ah”
  • Forgetting about a property, such as capacity, as soon as it wasn’t in my face.
The first two points are complex enough that further elaboration would merit their own posts; today I want to focus on some technical details of battery capacity and current and touch on the sloppy attitude that leads to the last two mistakes.
A battery stores energy; the “capacity” is how much energy it can store. Energy is measured in joules, abbreviated J, but it can also be expressed in different units such as watt-hours, abbreviated Wh (for larger quantities, such as residential electricity use, kilowatt-hours (kWh) are used; a kWh is a thousand Wh). This is similar to the way area can be measured in acres or in square miles: there are units specifically for area, such as acres, but you can also arrive at a measure of area by multiplying length by length, to get mile-miles, or the less awkward square miles. (The hyphenation imposed by English grammar does not help matters since the hyphen looks like a minus sign when we are actually multiplying the units together.) Watts and watt-hours are generally good units for electronics since they are easily related to voltage and current and since typical batteries that you can hold in your hand will have a capacity of a few dozen watt-hours.
In the case of a typical battery, where we can assume a constant voltage, we can replace watts with volts multiplied by amps. A 12-volt, 1 amp-hour (abbreviated Ah) battery and a 6-volt, 2Ah battery each store 12Wh, but the voltage is usually a critical parameter for a battery, and once a voltage is selected, the capacity can be specified by the amp-hour rating. The value in using the amp-hour is that it makes explicit our multiplication of rate, the amp, and time, the hour: a battery rated for one amp-hour can provide a current of one amp for about one hour, two amps for about half an hour, or 0.1 amps for about ten hours. I say “about” because the exact capacity will depend on the current.
The current and capacity for a battery are like the speed and range of a car. If your car has a range of about 300 miles, you can go 30 miles an hour for ten hours, or 60 miles an hour for five hours. Your efficiency will get worse with speed, so by the time you go 60 miles per hour, you might run out of gas after only four hours, for a range of 240 miles. Going back to my battery search, looking for a 1-amp battery was like looking for a car with a speed of 60 miles: 60 miles isn’t even a speed, and even if I revised my search to a car that could go 60 miles per hour, it still wouldn’t be a useful specification to look for. Most batteries on the scale I was looking at can deliver one amp, just like most cars can go sixty miles per hour. The maximum available current, like the maximum speed of the car, might be a more reasonable specification to search for, though providing those kinds of specifications might make the respective manufacturers nervous.
It is reasonable, though, to consider the maximum current a battery can safely deliver. That value will depend on all kinds of things, including the chemistry of the battery, but the maximum discharge rate is almost always tied to the capacity. That means that given a particular technology, a battery with double the capacity can deliver double the maximum current. Batteries are often specified with a discharge rate in terms of C, where C is the capacity of the battery divided by hours. For example, for a 2Ah battery, C is 2A. If the battery has a maximum discharge rate of 10C, the maximum current is 20 amps. It’s good to keep in mind that a 10C discharge rate means a battery life of less than 1/10th of an hour, and with the loss of capacity that a high discharge rate generally causes, the battery life would be less than five minutes.
As I tried earlier to recall what happened with my failed battery search, I was struck by the extent to which I ignored the “h” in the “Ah” specification and the ease with which I forgot about my critical “1-amp battery” requirement when I returned to the alkaline batteries. Unfortunately, this kind of carelessness or sloppiness is common, especially for beginners who might already be overwhelmed by all the information they need to sort through and who have not yet had the experience of losing time and destroying hardware because of inattention to details. I do not have any particular solution to this problem beyond reminding you to pay attention and think about how things should work before just hooking things up. Be on the lookout for contradictions; seeing “Ah” where you expect “A” should definitely make you very uneasy and lead you to reevaluate your expectations.
I will wrap up this article with some example battery capacities.
AA batteries.
  • A typical alkaline or NiMH battery in the standard “AA” size has about 2000 to 3000 mAh (or 2 to 3 Ah). With a cell voltage of 1.2 V to 1.5V, this corresponds to 2 to 4 Wh per cell. When multiple cells are used in series, as with the use of a battery holder or most pre-made battery packs, the voltage goes up but the capacity in amp-hours stays the same: an 8-cell NiMH pack made of AA cells will have a 9.6 V nominal voltage and a 2500 mAh capacity. There can be quite a range in capacities depending on the quality of the batteries. For larger cells, such as C and D size, the capacity should go up approximately proportionally to volume, but some cheap units (they’re usually light) can have the same capacity as the smaller cells. Alkaline cells have a more pronounced drop in capacity as the current drawn out of them goes up, so for applications requiring several hundred mA or more current, NiMH cells of the same size could last significantly longer. For low-current applications that need to run for months, alkaline batteries can last much longer because NiMH cells can self-discharge in a few months.

9V battery.
  • 9V alkaline batteries can be convenient for their high voltage in a small size, but the energy density (watt-hours per given volume or weight) is the same as other batteries with the same chemistry, which means the capacity in amp-hours is low. In approximately the same size as an AA cell, you get six times the voltage, so you also get about six times less in the Ah rating, or about 500 mAh. Given the high losses incurred from discharging in anything under a few hours, 9V batteries are impractical for most motors and therefore for most robots.

Coin or button cell batteries.
  • Coin or button cell batteries vary in size and chemistry, but you can generally expect 1.5 to 3 volts with a few dozen to a few hundred mAh.

12V, 8Ah sealed lead-acid battery.
  • Lead-acid batteries are popular for larger projects since they are usually the lowest-cost option and are widely available. Sealed lead-acid or gel-cell batteries are available in 6 V and 12 V versions (other multiples of 2 can be found), with the 12 V versions weighing about a pound per amp-hour. 12 V car batteries store a few dozen amp hours, and they weigh a few dozen pounds.

11.1V, 1800mAh Li-Po battery.
  • Lithium-based rechargeable batteries have around double the energy density of alkaline and NiMH batteries by volume and even better improvements by weight. These newer batteries are far less standardized in terms of battery size and shape, but since they are usually intended for applications where capacity or maximum battery life are important, these batteries usually have their voltages and capacities prominently labeled.

how battery works 3

Battery Basics

How Do Lead Acid Batteries Work?

Lead Acid batteries have changed little since the 1880's although improvements in materials and manufacturing methods continue to bring improvements in energy density, life and reliability. All lead acid batteries consist of flat lead plates immersed in a pool of electrolyte. Regular water addition is required for most types of lead acid batteries although low-maintenance types come with excess electrolyte calculated to compensate for water loss during a normal lifetime.

Battery Construction

Lead acid batteries used in the RV and Marine Industries usually consist of two 6-volt batteries in series, or a single 12-volt battery. These batteries are constructed of several single cells connected in series each cell produces approximately 2.1 volts. A six-volt battery has three single cells, which when fully charged produce an output voltage of 6.3 volts. A twelve-volt battery has six single cells in series producing a fully charged output voltage of 12.6 volts.
A battery cell consists of two lead plates a positive plate covered with a paste of lead dioxide and a negative made of sponge lead, with an insulating material (separator) in between. The plates are enclosed in a plastic battery case and then submersed in an electrolyte consisting of water and sulfuric acid (see figure # 1). Each cell is capable of storing 2.1 volts.A battery cell.
In order for lead acid cell to produce a voltage, it must first receive a (forming) charge voltage of at least 2.1-volts/cell from a charger. Lead acid batteries do not generate voltage on their own; they only store a charge from another source. This is the reason lead acid batteries are called storage batteries, because they only store a charge. The size of the battery plates and amount of electrolyte determines the amount of charge lead acid batteries can store. The size of this storage capacity is described as the amp hour (AH) rating of a battery. A typical 12-volt battery used in a RV or marine craft has a rating 125 AH, which means it can supply 10 amps of current for 12.5 hours or 20-amps of current for a period of 6.25 hours. Lead acid batteries can be connected in parallel to increase the total AH capacity.
In figure # 2 below, six single 2.1-volt cells have been connected in series to make the typical 12-volt battery, which when fully charged will produce a total voltage of 12.6-volts.
A typical 12-volt battery.

Lead Acid Batter Discharge Cycle

Fully charged battery provides electricity to a light bulb.
In figure # 3, above a fully charged battery is connected to a load (light bulb) and the chemical reaction between sulfuric acid and the lead plates produces the electricity to light the bulb. This chemical reaction also begins to coat both positive and negative plates with a substance called lead sulfate also known as sulfation (shown as a yellow build-up on plates). This build-up of lead sulfate is normal during a discharge cycle. As the battery continues to discharge, lead sulfate coats more and more of the plates and battery voltage begins to decrease from fully charged state of 12.6-volts (figure # 4).
Discharging battery.
In figure # 5 the battery is now fully discharged, the plates are almost completely covered with lead sulfate (sulfation) and voltage has dropped to 10.5-volts.
NOTE: Discharging a lead acid battery below 10.5 volts will severely damage it!
Fully discharged battery.
Lead sulfate (sulfation) now coats most of the battery plates. Lead sulfate is a soft material, which can is reconverted back into lead and sulfuric acid, provided the discharged battery is immediately connected to a battery charger. If a lead acid battery is not immediately recharged, the lead sulfate will begin to form hard crystals, which can not be reconverted by a standard fixed voltage (13.6 volts) battery converter/charger.
NOTE: Always recharge your RV or Marine battery as soon as possible to prevent loss of battery capacity due to the build-up of hard lead sulfate crystals!

Lead Acid Battery Recharge Cycle

The most important thing to understand about recharging lead acid batteries is that a converter/charger with a single fixed output voltage will not properly recharge or maintain your battery. Proper recharging and maintenance requires an intelligent charging system that can vary the charging voltage based on the state of charge and use of your RV or Marine battery. Progressive Dynamics has developed intelligent charging systems that solve battery problems and reduce battery maintenance.
The discharged battery shown in figure # 6 on the next page is connected to a converter/charger with its output voltage set at 13.6-volts. In order to recharge a 12-volt lead acid battery with a fully charged terminal voltage of 12.6-volts, the charger voltage must be set at a higher voltage. Most converter/chargers on the market are set at approximately 13.6-volts. During the battery recharge cycle lead sulfate (sulfation) begins to reconvert to lead and sulfuric acid.
Discharged battery connected to a converter/charger.
During the recharging process as electricity flows through the water portion of the electrolyte and water, (H2O) is converted into its original elements, hydrogen and oxygen. These gasses are very flammable and the reason your RV or Marine batteries must be vented outside. Gassing causes water loss and therefore lead acid batteries need to have water added periodically. Sealed lead acid batteries contain most of these gasses allowing them to recombine into the electrolyte. If the battery is overcharged pressure from these gasses will cause relief caps to open and vent, resulting in some water loss. Most sealed batteries have extra electrolyte added during the manufacturing process to compensate for some water loss.
Fully recharged battery.
The battery shown in figure # 7 above has been fully recharged using a fixed charging voltage of 13.6-volts. Notice that somelead sulfate (sulfation) still remains on the plates. This build-up will continue after each recharging cycle and gradually the battery will begin to loose capacity to store a full charge and eventually must be replaced. Lead sulfate build up is reduced if battery is given an Equalizing Charge once every 10 discharge cycles or at least once a month. An Equalizing Chargeincreases charging voltage to 14.4 volts or higher for a short period. This higher voltage causes gassing that equalizes (re-mixes) the electrolyte solution.
Since most RV and Marine craft owners seldom remember to perform this function, Progressive Dynamics has developed the microprocessor controlled Charge Wizard. The Charge Wizard will automatically provide an Equalizing Charge every 21 hours for a period of 15 minutes, when the battery is fully charged and not in use. Our 2000 Series of Marine Battery Chargers have the Charge Wizard feature built-in.
One disadvantage of recharging a lead acid battery at a fixed voltage of 13.6-volts is the recharge time is very long. A typical 125-AH RV or Marine battery will take approximately 80 hours to recharge at 13.6 volts. Increasing the charge voltage to 14.4-volts will reduce battery recharge time for a 125-AH battery to 3-4 hours. Once a battery reaches 90% of full charge, thevoltage must be reduced from 14.4-volts to 13.6-volts to reduce gassing and water loss. The optional Charge Wizardautomatically senses when a battery has a very low state of charge and automatically selects its BOOST MODE of operation.BOOST MODE increases the voltage of a PD9100 Series converter/charger to 14.4 volts. When the battery reaches the 90% charge level, the Charge Wizard automatically reduces the charge voltage down to 13.6 volts to complete the charge. Again, this is a standard feature on our Marine Chargers.
Another disadvantage of recharging a lead acid battery at a fixed voltage of 13.6-volts is that once it is fully charged, 13.6 volts will cause considerable gassing and water loss. To prevent this from occurring the charging voltage must be reduced to 13.2-volts. The Charge Wizard will automatically select its STORAGE MODE of operation (13.2-volts) once the battery reaches full charge and remains unused for a period of 30 hours. This feature is standard on all of Progressive Dynamics Marine Battery Chargers.
At a charging voltage of 13.2 volts, the converter/charger will maintain a full charge, reduce gassing and water loss. However, this lower voltage does not provide enough gassing to prevent a battery condition called Battery Stratification. Battery Stratification is caused by the fact that the electrolyte in the battery is a mixture of water and acid and, like all mixtures, one component, the acid, is heavier than water. Therefore, acid will begin to settle and concentrate at the bottom of the battery (see figure #8).
Battery stratification.
This higher concentration of acid at the bottom of the battery causes additional build-up of lead sulfate (sulfation), which reduces battery storage capacity and battery life. In order to prevent Battery Stratification, an Equalization Charge(increasing charging voltage to 14.4-volts) must be applied periodically. The Charge Wizard automatically selects itsEQUALIZATION MODE (14.4 volts) every 21 hours for a period of 15 minutes. This Equalizing Charge feature is standard on our Marine chargers.
As you have learned, in order to properly charge and maintain a lead acid battery you must use an intelligent charging system. Progressive Dynamics, Inteli-Power 9100 Series RV converters with a Charge Wizard installed, or one of our Inteli-Power Marine Battery Chargers will provide the intelligent charging system your battery needs for a long life, with low maintenance.

Answers to Common Questions about Batteries

Do lead acid batteries discharge when not in use?
All batteries, regardless of their chemistry, will self-discharge. The rate of self-discharge for lead acid batteries depends on the storage or operating temperature. At a temperature of 80 degrees F. a lead acid battery will self-discharge at a rate of approximately 4% a week. A battery with a 125-amp hour rating would self-discharge at a rate of approximately five amps per week. Keeping this in mind if a 125 AH battery is stored for four months (16 weeks) winter without being charged, it will loose 80 amps of its 125-amp capacity. It will also have severe sulfation, which causes additional loss of capacity. Keep your batteries charged while not in use!
Do lead acid batteries develop a memory?
Lead acid batteries do not develop any type of memory.
Do I need to completely discharge my lead acid battery before recharging it?
No, in fact you should never discharge your lead acid battery below 80% of its rated capacity. Discharging it below this point or 10.5 volts can damage it.
When do I need to perform an equalization charge?
Equalizing should be performed when a battery is first purchased (called a freshening charge) and on a regular basis (every 10 discharge cycles or at least once a month). Reduced performance can also be an indicator that an equalizing charge is needed.
What is an equalizing charge?
An equalizing charge for a 12 volt battery requires that it be charged with a voltage of at least 14.4 volts for a period of at least one hour once a month, or every 10 discharge cycles. An equalizing charge prevents battery stratification and reduces sulfation, the leading cause of battery failure.
When should I add water to my batteries?
How often you use and recharge your batteries will determine the frequency of watering. Also, using batteries in a hot climate will require more frequent watering. It is best to check your battery water level frequently and add distilled water when needed. Never add tap water to your battery. Tap water contains minerals that will reduce battery capacity and increase their self-discharge rate.
Warning - A brand new battery may have a low electrolyte level. Charge the battery first and then add water if needed. Adding water to a battery before charging may result in overflow of the electrolyte.
What is the proper electrolyte level?
Battery electrolyte levels should be just below the bottom of the vent well, about ½ - ¾ inch above the tops of the separators. Never let the electrolyte level to drop below the top of the plates.
Do I ever need to add acid to my battery?
Under normal operating conditions, you never need to add acid. Only distilled or deionized water should be added to achieve the recommended electrolyte levels.
Can my batteries freeze?
If your battery is partially discharged, the electrolyte in a lead acid battery may freeze. At a 40% state of charge, electrolyte will freeze if the temperature drops to approximately -16 degrees F. When a battery is fully charged the electrolyte will not freeze until the temperature drops to approximately -92 degrees F.
What are the most common mistakes made by owners of lead acid batteries?
  • Undercharging - Generally caused by not allowing the charger to restore the battery to full charge after use. Continuously operating a battery in a partial state of charge, or storing the battery in the discharged state results in the formation of lead sulfate (sulfation) on the plates. Sulfation reduces the performance of the battery and may cause premature battery failure.
  • Overcharging - Continuous-charging causes accelerated corrosion of the positive plates, excessive water consumption and in some cases, damaging temperatures within the battery. Lead acid batteries should be charged after each discharge of more the 50% of its rated capacity and during or after prolonged storage of 30 days or more.
  • Under-watering - In lead acid batteries water is lost during the charging process. If the electrolyte level drops below the tops of the plates, irreparable damage may occur. Check your battery water level frequently.
  • Over-watering - Excessive watering of a battery results in additional dilution of the electrolyte, resulting in reduced battery performance. Add water to your battery after it has been fully charged, never when the battery is partially discharged.
Can I reduce the need to add water to my battery by lowering the charging voltage to 13 volts or less?
Lowering the charging voltage will reduce the need to add water, but this will cause a condition known as battery stratification. Battery stratification is caused when the sulfuric acid in the electrolyte mixture separates from the water and begins to concentrate at the bottom of the battery.
This increased concentration of acid increases the formation of lead sulfate (sulfation). To prevent stratification, your battery should receive a periodic equalizing charge (increasing the charging voltage to 14.4 volts or above).

how battery works 2

Battery ratings

Because batteries create electron flow in a circuit by exchanging electrons in ionic chemical reactions, and there is a limited number of molecules in any charged battery available to react, there must be a limited amount of total electrons that any battery can motivate through a circuit before its energy reserves are exhausted. Battery capacity could be measured in terms of total number of electrons, but this would be a huge number. We could use the unit of the coulomb (equal to 6.25 x 1018 electrons, or 6,250,000,000,000,000,000 electrons) to make the quantities more practical to work with, but instead a new unit, the amp-hour, was made for this purpose. Since 1 amp is actually a flow rate of 1 coulomb of electrons per second, and there are 3600 seconds in an hour, we can state a direct proportion between coulombs and amp-hours: 1 amp-hour = 3600 coulombs. Why make up a new unit when an old would have done just fine? To make your lives as students and technicians more difficult, of course!
A battery with a capacity of 1 amp-hour should be able to continuously supply a current of 1 amp to a load for exactly 1 hour, or 2 amps for 1/2 hour, or 1/3 amp for 3 hours, etc., before becoming completely discharged. In an ideal battery, this relationship between continuous current and discharge time is stable and absolute, but real batteries don't behave exactly as this simple linear formula would indicate. Therefore, when amp-hour capacity is given for a battery, it is specified at either a given current, given time, or assumed to be rated for a time period of 8 hours (if no limiting factor is given).
For example, an average automotive battery might have a capacity of about 70 amp-hours, specified at a current of 3.5 amps. This means that the amount of time this battery could continuously supply a current of 3.5 amps to a load would be 20 hours (70 amp-hours / 3.5 amps). But let's suppose that a lower-resistance load were connected to that battery, drawing 70 amps continuously. Our amp-hour equation tells us that the battery should hold out for exactly 1 hour (70 amp-hours / 70 amps), but this might not be true in real life. With higher currents, the battery will dissipate more heat across its internal resistance, which has the effect of altering the chemical reactions taking place within. Chances are, the battery would fully discharge some time before the calculated time of 1 hour under this greater load.
Conversely, if a very light load (1 mA) were to be connected to the battery, our equation would tell us that the battery should provide power for 70,000 hours, or just under 8 years (70 amp-hours / 1 milliamp), but the odds are that much of the chemical energy in a real battery would have been drained due to other factors (evaporation of electrolyte, deterioration of electrodes, leakage current within battery) long before 8 years had elapsed. Therefore, we must take the amp-hour relationship as being an ideal approximation of battery life, the amp-hour rating trusted only near the specified current or timespan given by the manufacturer. Some manufacturers will provide amp-hour derating factors specifying reductions in total capacity at different levels of current and/or temperature.
For secondary cells, the amp-hour rating provides a rule for necessary charging time at any given level of charge current. For example, the 70 amp-hour automotive battery in the previous example should take 10 hours to charge from a fully-discharged state at a constant charging current of 7 amps (70 amp-hours / 7 amps).
Approximate amp-hour capacities of some common batteries are given here:
  • Typical automotive battery: 70 amp-hours @ 3.5 A (secondary cell)
  • D-size carbon-zinc battery: 4.5 amp-hours @ 100 mA (primary cell)
  • 9 volt carbon-zinc battery: 400 milliamp-hours @ 8 mA (primary cell)
As a battery discharges, not only does it diminish its internal store of energy, but its internal resistance also increases (as the electrolyte becomes less and less conductive), and its open-circuit cell voltage decreases (as the chemicals become more and more dilute). The most deceptive change that a discharging battery exhibits is increased resistance. The best check for a battery's condition is a voltage measurement under load, while the battery is supplying a substantial current through a circuit. Otherwise, a simple voltmeter check across the terminals may falsely indicate a healthy battery (adequate voltage) even though the internal resistance has increased considerably. What constitutes a "substantial current" is determined by the battery's design parameters. A voltmeter check revealing too low of a voltage, of course, would positively indicate a discharged battery:
Fully charged battery:
Now, if the battery discharges a bit . . .
. . . and discharges a bit further . . .
. . . and a bit further until its dead.
Notice how much better the battery's true condition is revealed when its voltage is checked under load as opposed to without a load. Does this mean that its pointless to check a battery with just a voltmeter (no load)? Well, no. If a simple voltmeter check reveals only 7.5 volts for a 13.2 volt battery, then you know without a doubt that its dead. However, if the voltmeter were to indicate 12.5 volts, it may be near full charge or somewhat depleted -- you couldn't tell without a load check. Bear in mind also that the resistance used to place a battery under load must be rated for the amount of power expected to be dissipated. For checking large batteries such as an automobile (12 volt nominal) lead-acid battery, this may mean a resistor with a power rating of several hundred watts.
  • REVIEW:
  • The amp-hour is a unit of battery energy capacity, equal to the amount of continuous current multiplied by the discharge time, that a battery can supply before exhausting its internal store of chemical energy.
  • An amp-hour battery rating is only an approximation of the battery's charge capacity, and should be trusted only at the current level or time specified by the manufacturer. Such a rating cannot be extrapolated for very high currents or very long times with any accuracy.
  • Discharged batteries lose voltage and increase in resistance. The best check for a dead battery is a voltage test under load.

Related Links

Saturday, March 15, 2014

Create your own WiFI Hotspot

Create your own WiFI Hotspot! SUPER EASY!



WiFi Hotspot
made by myself

Description:
Create your own WiFi Hotspot and share your internet connection.
I code this my self on a batch file (.bat). No 3rd party application
used. Works on Windows 7 & 8. Easy Steps even 5yr old kid can


*No Installation
*Super light weight(^^)
*Coded on a batch file(.bat) my self
*Easy as 1,2,3

***NOTE***
To know if your laptop/PC is capable of hosting a hotspot

OPEN CMD
type "netsh wlan show driver" without quote.
then see mo kung YES ang Hosted network Supported.



Steps:
1. Download WiFi Hotspot and extract.
2. Run WiFi Hotspot.exe
a. Go to WiFi Settings
b. Set new Hotspot
c. Enter SSID. Your WiFi name.
d. Enter PassKey. Your password of course.
e. Start WiFi
3. Open Control Panel and follow the Screenshots



CHOOSE THE NETWORK YOU WANT TO SHARE THE INTERNET CONNECTION (not your new made WiFi Hotspot).



CHOOSE YOUR WIFI HOTSPOT as your Home Networking Connection


PRESS OK. OK . OK. 

THATS IT.. YOU HAVE SUCCESSFULLY CREATED YOUR OWN WIFI HOTSPOT.

You can view the status of your hotspot using WiFi Hotspot.exe
Free to ask questions and suggestions ^^.

Attached Files Attached Files